2,150 research outputs found

    The Functional Significance of Black-Pigmented Leaves: Photosynthesis, Photoprotection and Productivity in Ophiopogon planiscapus ‘Nigrescens’

    Get PDF
    Black pigmented leaves are common among horticultural cultivars, yet are extremely rare across natural plant populations. We hypothesised that black pigmentation would disadvantage a plant by reducing photosynthesis and therefore shoot productivity, but that this trait might also confer protective benefits by shielding chloroplasts against photo-oxidative stress. CO2 assimilation, chlorophyll a fluorescence, shoot biomass, and pigment concentrations were compared for near isogenic green- and black-leafed Ophiopogon planiscapus ‘Nigrescens’. The black leaves had lower maximum CO2 assimilation rates, higher light saturation points and higher quantum efficiencies of photosystem II (PSII) than green leaves. Under saturating light, PSII photochemistry was inactivated less and recovered more completely in the black leaves. In full sunlight, green plants branched more abundantly and accumulated shoot biomass quicker than the black plants; in the shade, productivities of the two morphs were comparable. The data indicate a light-screening, photoprotective role of foliar anthocyanins. However, limitations to photosynthetic carbon assimilation are relatively small, insufficient to explain the natural scarcity of black-leafed plants

    REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture

    Get PDF
    Reflective electro-absorption modulation-intensity modulators (REAM-IMs) are utilized, for the first time, to experimentally demonstrate colorless ONUs in single-fiber-based, bidirectional, intensity-modulation and direct-detection (IMDD), optical OFDM PONs (OOFDM-PONs) incorporating 25km SSMFs and OLT-side-seeded CW optical signals. The colorlessness of the REAM-IMs is characterized, based on which optimum REAM-IM operating conditions are identified. In the aforementioned PON architecture, 10Gb/s colorless upstream transmissions of end-to-end realtime OOFDM signals are successfully achieved for various wavelengths within the entire C-band. Over such a wavelength window, corresponding minimum received optical powers at the FEC limit vary in a range as small as <0.5dB. In addition, experimental measurements also indicate that Rayleigh backscattering imposes a 2.8dB optical power penalty on the 10Gb/s over 25km upstream OOFDM signal transmission. Furthermore, making use of on-line adaptive bit and power loading, a linear trade-off between aggregated signal line rate and optical power budget is observed, which shows that, for the present PON system, a 10% reduction in signal line rate can improve the optical power budget by 2.6dB. © 2012 Optical Society of America

    Large-scale chaos and fluctuations in active nematics

    Get PDF
    We show that "dry" active nematics, e.g. collections of shaken elongated granular particles, exhibit large-scale spatiotemporal chaos made of interacting dense, ordered, band-like structures in a parameter region including the linear onset of nematic order. These results are obtained from the study of the relatively simple and well-known (deterministic) hydrodynamic equations describing these systems in a dilute limit, and of a self-propelled particle Vicsek-like model for this class of active matter. In this last case, revisiting the status of the strong fluctuations and long-range correlations now considered as landmarks of orientationally-ordered active phases, we show that the giant number fluctuations observed in the chaotic phase are a trivial consequence of density segregation. However anomalous density fluctuations are present in the homogeneous quasi-ordered nematic phase and characterized by a non-trivial scaling exponent

    Conceptual knowledge of decimal arithmetic

    Get PDF
    In 2 studies (Ns = 55 and 54), the authors examined a basic form of conceptual understanding of rational number arithmetic, the direction of effect of decimal arithmetic operations, at a level of detail useful for informing instruction. Middle school students were presented tasks examining knowledge of the direction of effects (e.g., "True or false: 0.77 * 0.63 > 0.77"), knowledge of decimal magnitudes, and knowledge of decimal arithmetic procedures. Their confidence in their direction of effect judgments was also assessed. The authors found (a) most students incorrectly predicted the direction of effect of multiplication and division with decimals below 1; (b) this pattern held for students who accurately compared the magnitudes of individual decimals and correctly executed decimal arithmetic operations; (c) explanations of direction of effect judgments that cited both the arithmetic operation and the numbers' magnitudes were strongly associated with accurate judgments; and (d) judgments were more accurate when multiplication problems involved a whole number and a decimal below 1 than with 2 decimals below 1. Implications of the findings for instruction are discussed

    Coronal Temperature as an Age Indicator

    Full text link
    The X-ray spectra of late type stars can generally be well fitted by a two temperature component model of the corona. We fnd that the temperature of both components are strong functions of stellar age, although the temperature of the hotter plasma in the corona shows a larger scatter and is probably affected by the activity of stars, such as flares. We confirm the power-law decay of the temperature of the hot plasma, but the temperature of the cool component decays linearly with log (age).Comment: 6 pages, 2 figures, typo in published paper: Sana et al. (2006) should be changed as Sana et al. (2007

    Hyperbolicity and the effective dimension of spatially-extended dissipative systems

    Full text link
    We show, using covariant Lyapunov vectors, that the chaotic solutions of spatially extended dissipative systems evolve within a manifold spanned by a finite number of physical modes hyperbolically isolated from a set of residual degrees of freedom, themselves individually isolated from each other. In the context of dissipative partial differential equations, our results imply that a faithful numerical integration needs to incorporate at least all physical modes and that increasing the resolution merely increases the number of isolated modes.Comment: 4 pages, 4 figure
    corecore